If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-50x-5=0
a = -16; b = -50; c = -5;
Δ = b2-4ac
Δ = -502-4·(-16)·(-5)
Δ = 2180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2180}=\sqrt{4*545}=\sqrt{4}*\sqrt{545}=2\sqrt{545}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{545}}{2*-16}=\frac{50-2\sqrt{545}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{545}}{2*-16}=\frac{50+2\sqrt{545}}{-32} $
| 3k+6=21k= | | 3k×6=21k= | | -4+3(w-1)=w+2(w-2) | | 2/3(3x-1)-3/4(5X-3)=9/8X-5/6(7x-9) | | 130+25x=530 | | t-$5.60=$1.04 | | 5x-2x+3x=17+12x-23 | | 8x-15=63 | | F(x)=4.3x | | 5x-2=3x=17+12x-23 | | F(x)=4. | | 1/3(9x-6)=1 | | 12v=3v+63 | | 6x+40=4x+20 | | 5n-5=-4(1-7n)-1 | | 14^(1-2x)=82 | | (x-10)^2-1=0 | | 2x/5=(x-1)/3 | | 13^x=8 | | -3x+6=-2x+4 | | 3+3(-4a-5)=-108 | | -3x+4=-4x-2 | | -3x+4=4x-2 | | 6(x-2)=-66 | | 16t^2+3t-168=0 | | 2x^2+33x-30=0 | | 4(2a+3)=5a | | -0.8a+-8.0=0.2a | | 2(v-2)=-2v-20 | | 2(3x+20)=4(x+5) | | 6x+8x+12=6x-8 | | .86y+5=y-60 |